Abstract: Possible reasons for the unusual dependences of the burning rates on the pressure of onium salts of perchloric acid with methylamines are considered. It is shown that combustion of perchlorates of methyl ammonium derivatives is formed from the competition of processes in the gas and condensed phases. In the implementation of the gas-phase combustion mechanism, very large evaporation enthalpies of salts play a huge role in the stability of salt combustion. The process of salt evaporation also affects the condensed-phase mechanism through high dissociation (surface) temperatures.

Keywords: energetic materials; perchlorates; tetramethylammonium perchlorate; combustion; decomposition kinetics

DOI: 10.30826/CE23160309

Figure Captions

Figure 1 The combustion temperature of perchlorate salts at a pressure of 10 MPa depending on the oxidizer/fuel ratio

Figure 2 Comparison of the burning rates of organic amine perchlorates and ammonium perchlorate

Figure 3 Differential scanning calorimetry (DSC) curve of tetramethylammonium perchlorate (TMAP) decomposition (heating rate 10 °C/min)

Figure 4 The TMAP gas evolution curves at different temperatures

Figure 5 Comparison of TMAP decomposition constants under nonisothermal (DSC) and isothermal conditions (k_s and k_{liq}) and decomposition rate constants of AP (1 [8]), MAP (2 [5]), DMAP (3 [5]), and TrMAP (4 [5])

Figure 6 Comparison of heats of combustion Q (1) and sublimation L_{sub} (2) for different salts

Table Caption
Some physicochemical properties of perchlorate salts

References

Received January 31, 2023

Contributors

Sinditskii Valery P. (b. 1954) — Doctor of Science in chemistry, professor, dean, Chemical Engineering Department, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., Moscow 125047, Russian Federation; vps@muctr.ru

Egorshev Viacheslav Yu. (b. 1959) — senior lecturer, Department of Chemistry and Technology of Organic Nitrogen Compounds, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., Moscow 125047, Russian Federation; egorshev@yahoo.com

Serushkin Valery V. (b. 1959) — Candidate of Science in technology, professor, Department of Chemistry and Technology of Organic Nitrogen Compounds, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., Moscow 125047, Russian Federation; serushkin.vv@muctr.ru

Chepurnoy Aleksey O. (b. 1992) — engineer, Department of Chemistry and Technology of Organic Nitrogen Compounds, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., Moscow 125047, Russian Federation; chepurnoi.a.o@muctr.ru

Mikhaleva Alena A. (b. 1996) — student, Department of Chemistry and Technology of Organic Nitrogen Compounds, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Sq., Moscow 125047, Russian Federation; mixal1996@yandex.ru