INITIAL STAGE OF THE OPERATION PROCESS IN A ROTATING DETONATION ENGINE

I. O. Shamshin¹, V. S. Ivanov¹, V. S. Aksenov^{1,2}, P. A. Gusev¹, and S. M. Frolov^{1,2}

¹N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation

²Federal Research Center Scientific Research Institute of System Development, Russian Academy of Sciences, 36-1 Nakhimovskii Prosp., Moscow 117218, Russian Federation

Abstract: The conditions for the mild initiation of detonation of homogeneous stoichiometric ethylene-oxygen mixtures diluted with nitrogen up to ~ 40% in a planar semiconfined slot-type combustor with a slot 5.0 ± 0.4 mm wide, simulating the annular combustor of a rotating detonation engine (RDE), are determined experimentally. To ensure mild detonation initiation, the fuel mixture in the RDE combustor must be ignited upon reaching a certain limit (minimal) fill with the mixture. Thus, for mild detonation initiation in a C₂H₄ + 3 O₂ mixture filling the slot, the height of the mixture layer must exceed the slot width by about 10 times (~ 50 mm) and for the C₂H₄ + 3 (O₂ + 2/5 N₂) mixture, by approximately 60 times. Compared to the height of the detonation waves continuously rotating in the RDE combustor in the steady-state operation mode, for a mild start of the RDE, the fill of the combustor with the explosive mixture to a height of at least 4 times more is required.

Keywords: rotating detonation engine; engine start-up; deflagration-to-detonation transition; ethylene–oxygen mixture; minimum layer height

DOI: 10.30826/CE22150407

Figure Captions

Figure 1 Schematic of experimental setup

Figure 2 Diagram illustrating the difference between the true height of the combustible mixture layer and its estimated value (the line corresponds to the equality of these values): $1 - [N_2] = 0\%$; 2 - 10%; 3 - 17%; 4 - 20%; 5 - 25%; 6 - 29%; 7 - 33%; 8 - 38%; and $9 - [N_2] = 40\%$

Figure 3 Pressure records: the onset of detonation in a 70-millimeter layer of the $C_2H_4 + 3 O_2$ mixture (a) and in a 250-millimeter layer of the $C_2H_4 + 3 (O_2 + 2/5 N_2)$ mixture (b)

Figure 4 Reaction front velocity vs. distance near the bottom of the slot combustor (Y = 10 mm): the onset of detonation in the 70-millimeter layer of the C₂H₄ + 3 O₂ mixture (*I*) and in the 250-millimeter layer of the C₂H₄ + 3 (O₂ + 2/5 N₂) mixture (*2*)

Figure 5 The map of deflagration-to-detonation transition (DDT) locations in the slot combustor: $1 - [N_2] = 0\%$; 2 - 10%; 3 - 17%; 4 - 20%; 5 - 25%; 6 - 29%; 7 - 33%; and $8 - [N_2] = 38\%$

Figure 6 The onset of detonation in the layer of maximum height 50 mm, mixture $C_2H_4 + 3O_2$, $X_{DDT} = 640$ mm, $Y_{DDT} = 7$ mm, $t_{DDT} = 1.81$ ms: (a) t = 0.12 ms; (b) 1.80; (c) 1.83; (d) 1.85; and (e) t = 1.90 ms

Figure 7 The onset of detonation in the layer of maximum height 110 mm, mixture $C_2H_4 + 3(O_2 + 1/4, N_2)$, $X_{DDT} = 750$ mm, $Y_{DDT} = 12$ mm, $t_{DDT} = 1.52$ ms: (a) t = 0.18 ms; (b) 1.50; (c) 1.52; (d) 1.55; and (e) t = 1.59 ms

Figure 8 The onset of detonation in the layer of maximum height 200 mm, mixture $C_2H_4 + 3(O_2 + 1/3 N_2)$, $X_{DDT} = 630$ mm, $Y_{DDT} = 8$ mm, $t_{DDT} = 1.21$ ms: (a) t = 0.14 ms; (b) 1.20; (c) 1.23; (d) 1.26; and (e) t = 1.35 ms

Figure 9 The onset of detonation in the layer of maximum height 290 mm layer, mixture $C_2H_4 + 3(O_2 + 2/5N_2)$, $X_{DDT} = 635$ mm, $Y_{DDT} = 5$ mm, $t_{DDT} = 1.27$ ms: (a) t = 0.20 ms; (b) 1.25; (c) 1.28; (d) 1.32; and (e) t = 1.40 ms

Figure 10 The onset of detonation in the layer of maximum height 390 mm layer, $C_2H_4 + 3(O_2 + 1/2N_2)$, $X_{DDT} = 665$ mm, $Y_{DDT} = 162$ mm, $t_{DDT} = 1.56$ ms: (a) t = 0.20 ms; (b) 1.55; (c) 1.57; (d) 1.60; and (e) t = 1.64 ms

Figure 11 The experimental domain of DDT in terms of the height of the layer and nitrogen content in the mixture $(O_2 + \beta N_2)$: empty symbols – no DDT; filled symbols – DDT; and dashed curve – approximation of the conditional boundary of the DDT domain

Figure 12 The minimum height of the layer normalized by the size of the detonation cell as a function of nitrogen content in the $C_2H_4 + 3(O_2 + \beta N_2)$ mixture

GORENIE I VZRYV (MOSKVA) – COMBUSTION AND EXPLOSION 2022 volume 15 number 4

EDN: KALBDK

Table Caption

Compositions of the studied combustible mixtures, their Chapman–Jouguet detonation parameters, and the minimum layer height required for DDT

Acknowledgments

The work was supported by the Ministry of Science and Higher Education (State contract No. 13.1902.21.0014, agreement No. 075-15-2020-806).

References

- 1. Dubrovskii, A. V., V. S. Ivanov, and S. M. Frolov. 2015. Three-dimensional numerical simulation of the operation process in a continuous detonation combustor with separate feeding of hydrogen and air. *Russ. J. Phys. Chem. B* 9(1):104–119. doi: 10.1134/S1990793115010157.
- Shamshin, I. O., V. S. Ivanov, V. S. Aksenov, P. A. Gusev, and S. M. Frolov. 2022. Experimental study of the initial stage of the operation process in detonation rocket and air-breathing engines. *Advances in detonation research*. Ed. S. M. Frolov. Moscow: TORUS PRESS. 17–20. doi: 10.30826/ICPCD13A07.
- 3. Voitsekhovskii, B. V. 1959. Statsionarnaya detonatsiya [Stationary detonation]. *Dokl. Akad. Nauk SSSR* 129(6):1254–1256.
- Sommers, W. P., and R. B. Morrison. 1962. Simulation of condensed-explosive detonation phenomena with gases. *Phys. Fluids* 5:241–248. doi: 10.1063/1.1706602.
- Dabora, E. K., J. A. Nicholls, and R. B. Morrison. 1965. The influence of a compressible boundary on the propagation of gaseous detonations. *Symposium (International) on Combustion*. 10(1):817–830. doi: 10.1016/s0082-0784(65)80225-9.
- Adams, T.G. 1978. Do weak detonation waves exist? *AIAA J*. 16(10):1035–1040. doi: 10.2514/3.61001.
- Ivanov, M. F., V. E. Fortov, and A. A. Borisov. 1981. Numerical simulation of the development of a detonation in gas volumes of finite thickness. *Combust. Explo. Shock Waves* 17:332–338. doi: 10.1007/ BF00751310.
- Rudy, W., M. Kuznetsov, R. Porowski, A. Teodorczyk, J. Grune, and K. Sempert. 2013. Critical conditions of hydrogen-air detonation in partially confined geometry. *P. Combust. Inst.* 34(2):1965–1972. doi: 10.1016/ j.proci.2012.07.019.
- Kuznetsov, M., J. Yanez, J. Grune, A. Friedrich, and T. Jordan. 2015. Hydrogen combustion in a flat semiconfined layer with respect to the Fukushima Daiichi accident. *Nucl. Eng. Des.* 286:36–48. doi: 10.1016/j. nucengdes.2015.01.016.

- Li, J., X. Mi, and A. J. Higgins. 2015. Geometric scaling for a detonation wave governed by a pressure-dependent reaction rate and yielding confinement. *Phys. Fluids* 27(2):027102. doi: 10.1063/1.4907267.
- 11. Reynaud, M., F. Virot, and A. Chinnayya. 2017. A computational study of the interaction of gaseous detonations with a compressible layer. *Phys. Fluids* 29:056101. doi: 10.1063/1.4982659.
- Bykovskii, F.A., S.A. Zhdan, and E.F. Vedernikov. 2006. Continuous spin detonations. J. Propul. Power 22(6):1204–1216. doi: 10.2514/1.17656.
- Grune, J., K. Sempert, H. Haberstroh, M. Kuznetsov, and T. Jordan. 2013. Experimental investigation of hydrogen-air deflagrations and detonations in semiconfined flat layers. *J. Loss Prevent. Proc.* 26(2):317–323. doi: 10.1016/j.jlp.2011.09.008.
- Taguchi, T., M. Yamaguchi, K. Matsuoka, *et al.* 2022. Investigation of reflective shuttling detonation cycle by schlieren and chemiluminescence photography. *Combust. Flame* 236:111826. doi: 10.1016/j.combustflame. 2021.111826.
- 15. Wu, Ming-Hsun, and Wei-Chun Kuo. 2012. Transmission of near-limit detonation wave through a planar sudden expansion in a narrow channel. *Combust. Flame* 159(11):3414–3422. doi: 10.1016/j.combustflame. 2012.06.006.
- Matsui, H., and J. H. Lee. 1979. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. *Symposium (International) on Combustion*. 17(1):1269–1280. doi: 10.1016/S0082-0784(79)80120-4.
- Moen, I. O., M. Donato, R. Knystautas, and J. H. Lee. 1981. The influence of confinement on the propagation of detonations near the detonability limits. *Symposium (International) on Combustion*. 18(1):1615–1622. doi: 10.1016/S0082-0784(81)80165-8.
- Kawasaki, A., and J. Kasahara. 2020. A novel characteristic length of detonation relevant to supercritical diffraction. *Shock Waves* 30:1–12. doi: 10.1007/s00193-019-00890-7.

Received November 1, 2022

Contributors

Shamshin Igor O. (b. 1975) — Candidate of Science in physics and mathematics, leading research scientist, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; igor_shamshin@mail.ru

Ivanov Vladislav S. (b. 1986) — Doctor of Science in physics and mathematics, leading research scientist, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str.,

GORENIE I VZRYV (MOSKVA) - COMBUSTION AND EXPLOSION 2022 volume 15 number 4

Moscow 119991, Russian Federation; research scientist, Federal Research Center Scientific Research Institute of System Development, Russian Academy of Sciences, 36-1 Nakhimovskii Prosp., Moscow 117218, Russian Federation; ivanov.vls@gmail.com

Aksenov Victor S. (b. 1952) — Candidate of Science in physics and mathematics, senior research scientist, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; associate professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation; v.aksenov@mail.ru

Gusev Pavel A. (b. 1942) — Candidate of Science in physics and mathematics, research scientist, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; gusevPA@yandex.ru

Frolov Sergey M. (b. 1959) — Doctor of Science in physics and mathematics, head of department, head of laboratory, N. N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation; smfrol@chph.ras.ru