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Abstract: The results of the PaSR (Partially Stirred Reactor) turbulent combustion models application to the
numerical simulation of the experiment by P. Magre et al. (ONERA) are presented, In the experiment, a subsonic
flow with premixed combustion of methane–air mixture inside a model duct with a back facing step was considered.
It is shown that the application of the EPaSR (Extended PaSR) model taking into account the duct walls cooling on
the change in the turbulent heat and mass transfer intensity due to heat release, makes it possible to give a correct
description of the flow structure. A possible mechanism of oscillations in the model duct is discussed. It is associated
with the interaction of acoustics and heat release. A new EPaSR-PrOm model of turbulent combustion which
takes into account both channels of turbulence–combustion interaction is briefly described. The experiment of
P. Magre et al. reproduces in an extremely simplified formulation the most significant physical effects characteristic
of turbulent combustion in the gas turbine unit (GTU) combustors. This makes it possible to hope for a successful
use of the EPaSR-PrOm turbulent combustion model in simulating the operation process in the GTU combustors.
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Figure Captions

Figure 1 Simulation of the P. Magre et al. experiment [8]: geometry of the computational domain. Dimensions are in meters

Figure 2 Simulation of the P. Magre et al. experiment [8] — temperature fields obtained using various models of turbulent
combustion: (a) without TCI; (b) PaSR; and (c) EPaSR

Figure 3 Temperature profiles in three cross sections without TCI: (a) x = 0.1 m; (b) 0.26; (c) x = 0.34 m; 1 — experiment;
2 — calculations of TsAGI; and 3 — calculations of ONERA

Figure 4 Temperature profiles in three cross sections of PaSR models, heat-insulated walls: (a) x = 0.1 m; (b) 0.26;
(c) x = 0.34m; 1 — experiment; 2–4 — calculations of TsAGI (2 — EPaSR; 3 — GPaSR; and 4 — PaSR); and 5 — calculations
of ONERA (EpaSR)

Figure 5 Temperature profiles in three cross sections of EPaSR: (a) x = 0.1 m; (b) 0.26; (c) x = 0.34 m; 1 — experiment;
2–5 — calculations of TsAGI (2 — heat-insulated walls; 3 — Tw = 1000 K; 4 — 800; and 5 — Tw = 600 K); and 6 —
calculations of ONERA

Figure 6 Instantaneous fields of the heat release rate in the vicinity of the step and velocity vectors at some points: (a) inflow of
fresh mixture inside the recirculation zone; and (b) outflow of combustion products

Figure 7 Temperature profiles (1 — experiment; and 2 — calculation of ONERA) in three cross sections of EPaSR model with
different constant values of Sct (3 — Sct = 1.0; 4 — 1.1; 5 — 1.2; 6 — 1.3; 7 — 1.4; and 8 — Sct = 1.5): (a) x = 0.1 m;
(b) 0,25; and (c) x = 0.34m

Figure 8 The Sct field obtained using the PrOm model
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