INFLUENCE OF ALUMINUM PARTICLE SIZE ON THE HEAT OF EXPLOSION OF ALUMINIZED EXPLOSIVE COMPOSITIONS

M. N. Makhov

N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation

Abstract: The investigation results confirm the possibility of the heat of explosion (HoE) to be considerably enhanced by the addition of dispersed aluminum (Al) to a high explosive (HE). It follows from the data obtained that in the case of the formulations prepared by mechanical mixing, the compositions with nanocolloidal aluminum (nAl) have no advantages in HoE over the mechanical mixtures, containing Al with the particle size of the order of several microns. The exception is provided by the formulations based on HE with a highly negative oxygen balance (OB). In the latter case, the mixtures with nAl can outperform their counterparts with micron-sized Al for HoE. The nanocomposite representing the system with uniform distribution of nAl particles in HE matrix can be superior to the mechanical mixture in HoE when the Al concentration is high and basic HE has negative OB.

Keywords: high explosive; acceleration ability; heat of explosion, aluminum; nanocomposite

DOI: 10.30826/CE19120115

Acknowledgments

This work was supported by the subsidy given to the Semenov Institute of Chemical Physics to implement the state assignment, the topic AAAA-A18-118031490034-6 “Development of high-energy materials of new generation and research of their characteristics.”

References


Received December 25, 2018

GORENIE I VZRYV (MOSKVA) — COMBUSTION AND EXPLOSION 2019 volume 12 number 1
Influence of aluminum particle size on the heat of explosion of aluminized explosive compositions

Contributor

Makhov Michael N. (b. 1946) — Candidate of Science in chemistry, leading research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; MNM17@yandex.ru