THEORETICAL STUDY OF DIMERIZATION KINETICS OF ALUMINUM OXIDE

A. S. Sharipov and B. I. Loukhovitski

Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow, 111116 Russian Federation

Abstract: The study is aimed at the quantum chemical investigation of alumina dimerization. The appropriate potential energy surface is explored using the hybrid density functional with perturbative second-order correlation B2PLYP. It is shown that the interaction of two Al₂O₃ monomers leads to (Al₂O₃)₂ formation in different forms. The RRKM-based analysis revealed that the rate constant of 2Al₂O₃ → (Al₂O₃)₂ process can be lower by several orders of magnitude than the estimates by the rigid-sphere theory. The corresponding temperature- and pressure-dependent rate constant can be expressed by the Lindemann fit as follows:

\[k_0(T) = 8.01 \times 10^{19} T^{-1.079} \exp(21671/T) \text{ cm}^6/\text{(mole}^2\text{s}) \]

and

\[k_{\infty}(T) = 9.91 \times 10^{19} T^{-1.754} \exp(-2911/T) \text{ cm}^3/\text{(mole} \cdot \text{s}) \]

Keywords: alumina; dimerization; RRKM

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (projects Nos. 17-01-00810 and 16-29-01098).

References

Contributors

Sharipov Alexander S. (b. 1986) — Candidate of Science in physics and mathematics, senior research scientist, Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation; sharipov@ciam.ru

Loukhovitski Boris I. (b. 1979) — Candidate of Science in physics and mathematics, head of sector, Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation; loukhovitski@ciam.ru