ANALYSIS OF LITERATURE MODELS OF OXIDATION OF METHANE AT MODERATE TEMPERATURES

A. A. Belyaev¹, A. V. Nikitin¹,², P. D. Toktaliev²,³, P. A. Vlasov¹, A. V. Ozerskiy¹,², A. S. Dmitruk¹, A. V. Arutyunov¹, and V. S. Arutyunov¹,²

¹N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation
²Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation
³Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow 111116, Russian Federation

Abstract: The interest to the partial oxidation of methane at moderate temperatures below 1000 K is explained by its role in the promising processes of direct conversion of gas-phase hydrocarbons into other chemical compounds, first of all, in the process of Direct oxidation of Methane To Methanol (DMTM). The optimization and technological development of such processes need a reliable kinetic model. This study presents the critical analysis of published models that have been used for simulating partial oxidation of methane at different conditions and temperature ranges and the results of their preliminary testing in terms of their capability to describe the DMTM process.

Keywords: natural gas; methane; partial oxidation; methanol; formaldehyde; oxygenates

Acknowledgments

This work was performed within the framework of the Program of Fundamental Research of the Russian Academy of Sciences for 2013–2020 on the research issue of IChP RAS No. 47.16. Theme number in Federal Agency for Scientific Organizations: 0082-2014-0004. State registration number of Center of Information Technologies and Systems for Executive Power Authorities (CITIS): AAAA-A17-117040610283-3.

References

15. Lodeng, R., O.A. Lindvag, P. Søraker, P.T. Roterund, and O.T. Onsager. 1995. Experimental and modeling study of...


Received January 12, 2018

Contributors

**Belyaev Andrey A.** (b. 1954) — Candidate of Science in physics and mathematics, senior research scientist, N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; belyaev1HF@yandex.ru

**Nikitin Aleksey V.** (b. 1988) — Candidate of Science in chemistry, senior research scientist, N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; researcher, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation; nik@icp.ac.ru

**Toktaliev Pavel D.** (b. 1985) — junior research scientist, Central Institute of Aviation Motors, 2 Aviamotornaya Str., Moscow, 111116 Russian Federation; toktalievp@ciam.ru

**Vlasov Pavel A.** (b. 1955) — Doctor of Science in physics and mathematics, head of laboratory, N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; associate professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation; iz@chph.ras.ru

**Ozerskyi Aleksey V.** (b. 1992) — PhD student, N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; engineer, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation; alex.ozersky.1992@gmail.com

**Dmitruk Anna S.** (b. 1992) — PhD student, M.V. Lomonosov Moscow State University, GSP-1, Leninskiy Gory, Moscow 119991, Russian Federation; research scientist, N.N. Semenov Institute of Chemical Physics, Russian Federation; belyaev1HF@yandex.ru
Analysis of literature models of oxidation of methane at moderate temperatures

Academy of Sciences, 4 Kosygin Str., Moscow 119991; anitadmitruk@gmail.com

Arutyunov Artem V. (b. 1994) — research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; aarutyunow@gmail.com

Arutyunov Vladimir S. (b. 1946) — Doctor of Science in chemistry, professor, head of laboratory, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; head of laboratory, Institute of Problems of Chemical Physics; Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation; arutyunov@chph.ras.ru