ON ACETYLENE SYNTHESIS BY PARTIAL OXIDATION OF SIMPLE HYDROCARBONS

K. Ya. Troshin¹,² and A. A. Borisov¹,²

¹N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation
²National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation

Abstract: “Freezing” of intermediate combustion products of model natural gas and associate petroleum gas mixtures by cooling them is modeled using detailed kinetic mechanism. Hydrocarbon mixtures are partially oxidized by oxygen in the self-ignition regime at initial temperature of 973 K. The aim of combustion product freezing is to stop acetylene concentration decay in them. Acetylene concentration is shown to level off when the temperature in the frozen products drops to 650 K. The acetylene concentration in mixtures steeply rises during ignition and then drops, the rate of acetylene concentration decay in products being cooled is not necessarily slower than that in noncooled products. There is some threshold pressure value above which their ratio reverses. The higher the content of heavier hydrocarbons in the initial mixture the lower this pressure value.

Keywords: partial oxidation; hydrocarbons; acetylene; kinetic modeling; “freezing”

Acknowledgments

The work was fulfilled in the framework of comprehensive Program of Scientific Research No. 18 of the Presidium of the Russian Academy of Sciences.

References


Contributors

Troshin Kirill Ya. (b. 1949) — Doctor of Science in physics and mathematics, chief research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation; troshin@chph.ras.ru

Borisov Anatoly A. (b. 1932) — Doctor of Science in physics and mathematics, chief research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; professor, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe Sh., Moscow 115409, Russian Federation; borisov@chph.ras.ru