Abstract: The paper describes recent results on a principally new type of reformers based on the noncatalytic conversion of hydrocarbons into syngas in volumetric matrix burners. The use of enriched air and oxygen allowed us to produce syngas with low content of nitrogen for petrochemical applications, including production of methanol, syncrude oil, and others. The effective recuperation of heat of the produced syngas inside the matrix cavity enabled us to operate at optimal values of oxygen excess coefficient $\alpha = 0.34–0.36$ thus making it possible to obtain in such simple noncatalytic process very high yields of nitrogen-free syngas with a concentration of H_2 exceeding 50% and that of CO exceeding 30%.

Keywords: natural gas; methane; syngas; matrix burner; partial oxidation

References

Contributors

Nikitin Aleksey V. (b. 1988) — Candidate of Science in chemistry, research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; engineer, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation; nik@icp.ac.ru

Savchenko Valeriy I. (b. 1941) — Doctor of Science in chemistry, professor, leading research scientist, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation; vsavch@icp.ac.ru

Sedov Igor V. (b. 1983) — Candidate of Science in chemistry, head of department, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation
Matrix conversion of methane into syngas with low content of nitrogen

Timofeev Kirill A. (b. 1993) — junior research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; kirill.timofeev1993@gmail.com

Shmelev Vladimir M. (b. 1940) — Doctor of Science in physics and mathematics, head of laboratory, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; shmelev@chph.ras.ru

Arutyunov Vladimir S. (b. 1946) — Doctor of Science in chemistry, professor, head of laboratory, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; head of laboratory, Institute of Problems of Chemical Physics, Russian Academy of Sciences, 1 Acad. Semenov Av., Chernogolovka, Moscow Region 142432, Russian Federation; arutyunov@chph.ras.ru