ASSOCIATION BETWEEN THE DEFECT STRUCTURE OF MECHANICALLY ACTIVATED MoO₃ AND THE CHEMICAL ACTIVITY OF MICs Al/MoO₃

M. V. Sivak, A. N. Streletskii, I. V. Kolbanev, and E. N. Degtyarev

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation

Abstract: To study defect structure of mechanically activated MoO₃, different techniques (electron spin resonance, Raman spectroscopy, X-ray diffraction, and adsorption/desorption) have been used. There are two stages of mechanical activation of MoO₃: split and friction. On the split stage, the particle size decreases to 60 nm and the specific surface area increases to 30 m²/g. During the stage of friction, the specific surface area does not increase but the value of microstrains as well as concentration of paramagnetic centers grow. Friction induces phase transition from equilibrium orthorhombic to metastable monoclinic phase. It has been shown that release of oxygen from mechanically activated MoO₃ arises when temperature increases above 230–250 °C. Release of oxygen occurs simultaneously with annealing of paramagnetic centers and microstrains and with formation of structures which are the precursors of crystallographic shear. It is suggested that oxygen is released as the result of distorted Mo(O₂)–O–Mo(O₂) bonds breaking.

Keywords: mechanical activation; ball milling; MoO₃; metastable intermolecular composites (MICs); defect structure

Acknowledgments

The work was supported by the Russian Foundation for Basic Research (projects Nos. 16-03-00178a and 16-29-01030a) and Program 14P of the Presidium of the Russian Academy of Sciences.

References


Received December 29, 2016

Contributors

Sivak Mikhail V. (b. 1988) — research assistant, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; chayok1988@gmail.com
Streletskii Andrei N. (b. 1945) — Doctor of Science in chemistry, head of laboratory, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; str@center.chph.ras.ru
Kolbanev Igor’ V. (b. 1937) — chief research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation
Degtyarev Yevgeniy N. (b. 1953) — research scientist, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; degen@chph.ras.ru